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THE UNSTEADY AXISYMMETRIC CONTACT PROBLEM 
WITH HEAT GENERATION1" 

V. P. L E V I T S K I I ~  and V. P. N O V O S A D  

Evov 

(Received 9 November 1993) 

Unfike previous papers [1--3], where steady contact problems of thermoelasticity were investigated, an unsteady contact problem 
for a stiff finite cylinder with a plane base is considered. The cylinder is clamped to an elastic half-space and is rotated around 
its rods with constant angular velocity. Heat generation due to friction over the contact area, non-ideal thermal contact between 
the bodies and heat exchange with the surroundings from the free surfaces is assumed. A Laplace transforraation with respect 
to the time coordinate, a Hankel transformation with respect to the radial coordinate for the half-space and the method of 
straight lines for the cylinder are used to solve the problem. The temperature and thermal flux fields in the cylinder and in 
the half-space, the contact stresses and the displacements of the half-space are determined. The problem is analysed for 
values of the input parameters which do not allow any change with time in boundary conditions. © 1998 Elsevier Science Ltd. 
All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a cylindrical punch of radius R and height 1, which is indented with a vertical force P into an 
elastic half-space and is rotated with constant angular velocity co (Fig. 1). At the initial instant of time 
we will assume the temperature of both bodies and the residue of the punch to be zero. The mathematical 
formulation of the problem is as follows: 

the equations of thermoelasticity for the half-space 

u r . ae ~ at k ~ e = ~  at 
a . . - ~ - + ~ = ~ ,  au~+ az ~az 

3 2 1 3  32 e=fau,+Ur+~Uz) 
a=~:+r~+az--a-' ~,ar r" az) 

the equations of heat conduction for the cylinder and the half-space 

(1.1) 

aT at 
a r =  x , - ~ ,  a t =  x~-~  (1.2) 

the temperature boundary conditions 

aT  R - a T = - T a T  (0~<z<~l)  z = 0 : ~ z  = TOT (0~<r~<R);  r =  . a r  (1.3) 

3t aT 
z = l: ~2 ~z - Z! 7z  = A o r a ~ ,  

at 
aZ THt (r> R) 

at aT 
Z2 -~z + Kl ~z = h(t - T) (0 <<- r <<. R) (1.4) 

the force boundar] conditions 

z = l : u z = f ( O < ~ r ~ R  ), o , , = 0 ( r > ~ R ) ,  z , z = 0 ( r < o ~ )  (1.5) 
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Fig. 1. 
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the initial conditions 

x=O: t = T = O ,  f=3~f~=o (1.6) 

Here k = (X + gt)/~t = 1/(1 - 2v), v is Poisson's ratio, 13 = (3X + 2~t)ctr, ~. and gt are Lam6 coefficients, 
¢tr is the temperature coefficient of linear expansion, f(x) is a function of the punch settling, Xl and 
are the thermal conduetivities of the cylindrical punch and the half-space, respectively, Y0 = Ya = yn 
are the heat-transfer coefficients with the external medium for the end of the cylinder, the side surface 
of the cylinder and the free surface of the half-space, respectively, T is the temperature of the cylindrical 
punch, t is the temperature of the half-space, 9(/= 1/a i (i = 1, 2), where a i are the thermal diffusivities 
of the cylinder and the half-space, respectively and h -1 is the thermal resistance coefficient. It was 
assumed in [4] that %o = fro , ,  wherefr  is the friction coefficient. 

The functions t, T, u,, Uz, ¢s.., x,z depend on three real variables (r, z and x). Assuming that the curvature 
of the edge of the punch has a parabolic form, it is convenient to represent the function (f(r, x) in the 
form [51 

f ( r , x ) =  f l ( x  ) ( r - r*)2  H ( r - r * )  (1.7) 
2R. 

where r* < R is a certain point close to R (we assume that the curvature begins fairly close to the edge 
of the punch) and R e is the radius of curvature of the edge. 

When solving the problem we will also use the condition of dynamic equilibrium of the punch 

02fl(x) R 
m = P(x)+2n~ r~ zz ( r, l, "t )dr (1.8) 

0%2 0 

2. F O R M U L A T I O N  OF THE P R O B L E M  IN TERMS 
OF LAPLACE T R A N S F O R M A N T S  

Applying a Laplace transformation to Eqs (1.1) and (1.2) and the boundary conditions (1.3)-(1.5), 
and using (1.6), we obtain 

, t  Oe L bt L 
Au~ - - ~  + k = 

Or ~t Or '  

AT L = X1sT t ,  

OT L _ - t  
z=O: " ~ z  - Y ° I  (O~<r~<R); r=R:  

• Oe L ~ Ot L 

= . Oz 

~ L  = X2st L 

OT t 
Or = -YaT/" (0 ~< z ~< I) 

(2.1) 

(2.2) 

(2.3) 

OtL - OTL l~ ~ 2 ~ z  + A q ~ z  = h ( t t . _ T t ) ( O < r < R )  z=l :  ~.2"~Z -~l-'~-Z = frcorffzz, ^ Ott ^ 
(2.4) 
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btL = ynt  L (r > R) 
az 

I. = f L  /" = 0 ( r  ~> R), L = 0 ( r  < oo) (2.5)  Z = l: u z (0 <~ r ~< R), O,, 'c,z 

~-L L L ffL, xL depend on two real variables (r and z) and one complex variable The functions t L, I , U .  Uz, 
s. We will write Eq. (1.8), taking conditions (1.6) for the settling function into account, in the form 

R 
m52flL($) ~. pL($)+ 2 ~  rf f~(r , l ,s)dr (2.6)  

0 

3. S O L U T I O N  OF THE HEAT C O N D U C T I O N  P R O B L E M  FOR  A P U N C H  
IN TERMS OF LAPLACE T R A N S F O R M A N T S  

In the first equation of (2.2) we will change to dimensionless coordinates p = r/R, t = z/l. Using the 
finite-difference approximation of this equation and the second boundary condition of (2.3) with respect 
to the dimensionless radial coordinate p, and also the method of straight lines [6] at each of the N points 
of subdivision p /=  Ap(i - 1) ffi (i - 1) / (N-  1) (i = 1 . . . . .  N), we can reduce the problem for a cylinder 
to a system of linear differential equations, which can be represented in the form 

dwld~ = Bw 

wr(~;,s)=(r~(pi,t,s) ..... TL(p~,~,s), dTL(pl't's) dTL(p~,t,s). ~ 
• a t  . . . . .  a t  ) 

b2(4+b3s),-462,0 .... ,0 
: iS 

o . . . .  ,O,-2b ,b2(E÷hs)+b4 

b2= b3 = RaAp2X~, /,4= 1+ R2Ap2 ' 

(3.1) 

where O is the zero matrix and E is the identity matrix (each of the matrices O, E and B 1 has dimensions 
of N x N ) .  

The solution of (3.1) can be constructed using a matrix exponential function [7] 

c o  Bn(s)t" 
w(t,s) = exp(B(s)t)d(s), exp(B(s)t) = 

n=0 n!  
(3.2) 

The function d(s) is determined using the boundary conditions. 

4. S O L U T I O N  OF THE P R O B L E M  FOR A HALF-SPACE IN D O U B L E  
LAPLACE AND H A N K E L  T R A N S F O R M A N T S  

Applying a Hankel transformation of zero order with respect to the coordinate r to the second equation 
of (2.2) and taking kito account the fact that t --> 0 as z --> oo we can write the solution for the double 
transformant of the temperature in the form 

tut(~ ,z,s) = D(~,s)exp(-v2(~,s)(z-l)), V2(~ ,s) = 3f~ + X2s (4.1) 

Using the solutiow of the axisymmetric equations of thermoelasticity for the half-space in Hankel 
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transforms [3] and Eq. (4.1), we obtain expression for the double transformants of the stresses, 
displacements and heat flux. Using the last condition of (2.5) these expressions can be written in terms 
of the two unknown functions C1(~, s) and D(~, s). In particular, on the boundary of the half-space we 
have 

tt~t (~,l,s) = D(~,s), qt~ (~,l,s) = )~2V2(~,s)D(~,s) 

uz LH (~, l, s) = ~201C l (~, s) - O3V 2 (~, s)s -ID(~, s) 

6~ tt (~, l, s) = ~30 IC I (~, s) - 63~s -t (~2 (~, s)(k - 1) -j + ~)D(~, s) 

= k  k + l  03 = b i k + l  =-25t k-k21 21~bl Oi k - l '  "~-2 k------~' oil ' 63=-X--'-~" 

(4.2) 

5. D E R I V A T I O N  OF T H E  S O L U T I O N S  F O R A  C Y L I N D E R  A N D  A H A L F -  
SPACE IN A C C O R D A N C E  W I T H  THE B O U N D A R Y  C O N D I T I O N S  

Changing to the dimensionless parameter rl = ~ in (4.2), applying an inverse Hankel transforma- 
tion and satisfying the boundary conditions (2.4) and (2.5), we obtain the equations 

~'2 7 ~'i ~TL(p,~,S) I L 
R3 ~0 ~F2(~'s)FOl's)~J°(~P)d~4 l ~ 1;:1 =-fr°aPR°" (p,l,s) 

' 'rL(,';'') ;I l i 34 +hTL(p'~'s)) =-fly )~2(W2(rl, s)+hR)F(~,s)rlJo(~p)dq 
I~=1 

[rl2OtC(rl,s)- 03Rs-lU/2(~,s)F(rl, s)]~JoOlp)dq = R4fL(s) (0 ~< p ~< 1) 
0 

(5.1) 

I ~ (%(~,s)+TuR)F(rl, s)rlJo(rlp)dr I=0 (p>~ I) 
R3 0 

o 

where We(rl, s) = ,/(112 + XzsR2), C(rl, s) = CI(rl/R, s), F(~, s) = D('q/R, s). 
We extend (5.2) over the whole p axis using the Heaviside function 

I ~ (~Fe(.q,s)+YHR)F(rl, s).qjo(.qp)d.q = q>(p,s)H(l-p) 
R3 0 

(5.2) 

(5.3) 

±7 R5 0 [r1201 CUb s) - o aRrls -2 (~F 2 (11, s) + "qs)F(rl, s)]rlJ0 (qp)drl = G L (p, I, s)H(l - p) 

After this we represent the unknown functions ~0(p, s) and oL(o, I, S) in the form of expansions in 
Fourier-Bessel series with coefficients which depend on s 

N - I  N 

q~(p,s)=bo(s)+ ~, bn(s)Jo(IXnp), o~(p,l,s)= E an(S)Jo(~tnP) (5.4) 
n=l  n=l  

where gn are the zeros of the Bessel function of zero order Jo(x). 
Applying a Hankel transformation to (5.3), the unknown functions F(~, s) and C(~, s) can be expressed 

in terms of the function an(s), bn(s) (n = 1 . . . . .  N). Then, by satisfying relation (2.6) and also (5.1) 
and the first condition of (2.3) (relations (5.2) with representation (5.3) are satisfied automatically) at 
each point of the uniform subdivision Pi = Ap(i - 1) = (i - 1 ) / (N-  1) (i = 1 . . . . .  N), we arrive at the 
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system of equations 
N 

-I * ~. an(S)OiROlll.tnJl(~n)An(Pi)+bo(s)s I'l (Pi,s)+ 
n=l 

N-I 

+ ~ b n (S)S-IlXnJl (~t n)I'l n (pi, S) -- fL  (pi, S) = 0 
n=l 

N 
~. an( s) fTPiC.ORJo(gnPi ) + bo(s)X2l* (Pi,s) + 

n=l 
N-I 2N * 

+ ~ bn ($)~'2]'tnJl (gn)In  (Pi, s)  + ~1/-I ~ MN+i,n (s)dn (s)  = 0 
n=l n=l 

N-I 
bo(s)Y*(Pi,s)+ ~. bn(s)lxnJl(lln)Yn(Pi,s)- 

n=l 
12N * 2N 

-~'1 l- E MN+i.n (s)dn ( s ) -  h ~, MZ, (s)d n (s) = 0 
n=l n=l 

l-l dN+i(s) - Yodi(s) = 0 

22N 
2xR ~, a n (s)J 1 (Ix n)~t~ I - ms2 fl t'(s) = _pL (s) 

n=l 

Here (i = 1 . . . . .  N) 

A.(pi)=:~ Jo(~l)Jo('qpi)(g~-'q2)-I d'q 
o 

n(p;,s)s,(n)an, n(p,,s)n(o. -n2l-'Jo(nlan 
o 0 

I-l(Pi,S) = ( O i O 3 a l l  (~IJ2 (ll, s ) (k  - 1) -I + 11) - 0 3 ~ 2  (~, s)(tlJ2 (~,,v) + R~H)  -I J0(TIOi) 

]*(pi,$)m'~ l(Pi,s)J,(rl)dq, In(pi,s)= ~ l(pi,s)Tl(ix~_rl2)-' jo(rl)drl 
o 0 

l(Pi'S) = W2(rl, S)(~2 (rl, s) + RYU) -I J0(qPi) 

r(p,,,)Sl(n)an, jo(n)an 
0 o 

Y(Pi, s)  = (L2tP2 ('q, s) + hR)(W2 (~1, s) + 1~ H )-I Jo (TIP/) 

and M*,n(s) are the elements of the matrix (3.2) when ~ = 1. 
Note that in this paper we have used the fact that r* = (1 - 1/(N - 1))R. Hence 

f:(Pi,s) = fiL(s) (i = I ..... N-l), f:(pjv,s) = flC(s) + (RPN - r*)2 
2Rps 

In addition tolL(S), in system (5.5) there are 4N unknown functions, namely 

an(s), bn(s) (n = 1 ..... N) 

the coefficients of tile expansions of the unknown functions in Fourier-Bessel series and 

dn(s ) (n = 1 ..... 2N) 

the components of the vector d(s). 

(5.5) 

(5.6) 

(5.7) 
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6. D E T E R M I N A T I O N  O F  T H E  O R I G I N A L S  
OF T H E  R E Q U I R E D  Q U A N T I T I E S  

The transformant of  only one of the required quantities (we have in mind the transformant f~(s)  of 
the displacements of the elastic half-space under the plane part of the punch) is included directly in 
system (5.5). The transformants of the other required quantities are expressed in terms of the functions 
(5.6) and (5.7). Thus, on the boundary of  the half-space 

+ ~ bn(s)ixnJl(gn)R (~2(I~,$)+R'~H)-I(IX2n -rl2)-lrlJo( 'q)J0 "q dq (6.1) 
n=l 0 

) ) ,s + ~. bn(s)IXnJl(Bn)X21n ,s (6.2) 
n=l 

uLz(r,l,s)= ~, an(s)OiR(~ ! gnJl(ixn)An +bo(s)s FI ,s + 
n=l 

: ; - i  l I" r "~ ( 6 . 3 )  
+ bk(s)s- IxnJl(ixn)n /- ,s / 

n=l \ i~. 1 

The transformants of the temperature and the heat flux in the cylinder can be found from (3.2), while 
the transformant of  the contact stresses can be found from (5.4). 

To calculate the originals of these functions we will use a numerical method of inverting the Laplace transformation 
employing Fourier sine series [8]. We will illustrate this using the example of the functionfl(x). Using this method 
we obtain 

.~('0= ~ sin[(2k+l)0]%, O=arccos(e -°~) (6.4) 
k=O 

where o is a certain real positive number which is chosen depending on the range for which one must obtain the 
value of the original, and ek are constant coefficients, to calculate which, if we are limited in (6.4) to the first N* 
terms of the series, we have the following system of linear algebraic equations with triangular matrix 

2k + l ~n-k An+l 
= Z-~--af~Lt(2n + 1)ol (n = 0,1 ..... N*) (6.5) 

k=O 

We obtain the quantitiesf 1L(s) required in order to use the method at differently situated points on the real axis 
by solving system (5.5) for each of the sn = (2n + 1)tl (n - 0, 1 . . . .  , N*). 

7. A N A L Y S I S  OF T H E  N U M E R I C A L  R E S U L T S  

It is assumed that the force P acting on the punch is given by the equation 

P(X) = F(1 - exp(-a '0)  (7.1) 

where a and F are certain constants. 
When carrying out the calculations we also assumed that the material of the cylinder is steel while 

the material of the half-space is aluminium. The values of the constants were chosen as follows: 
N = 17, N* = 11, ~n = 7o = 7c~ = 10 m -1, h = 10 kW/m 2 K, aT = 22.9 x 10 -6 K -1, F = 30 kN, co = 
0.5 s -I, R = 1 m, l = 0.2 m, X1 = 200,000 s/m 2, X2 = 50,000 s/m 2, a = 1, X = 5.46 x 101° Pa, 
IX = 2.56 x 10 l° Pa, f r  = 0.1, ~,i = 22 W/re.K, ~ = 209 W/m K and m = 4900 kg. 

The results obtained are partially shown in Figs 2-6. In Figs 2 and 3 we show the distribution of the 
contact stresses and temperature, respectively, on the boundary of the half-space at different instants 
of time. In Fig. 4 we show the changes with time of the displacements of  points of the elastic half-space 
which are in contact with the punch (the function fl(x) is shown on a scale of 1:0.179 x 10 -3 m), and 
the temperature (on a scale of 1:28,5") at points of the boundary of the half-space close to the edge of 
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the punch. If we follow the changes in the other required quantities, we find that, after a certain instant 
of time, they hardly change. Taking as the time required to reach the steady state % the time after which 
any characteristic imrestigated does not change by more than 1%, we obtain Xc ~- 3.7 s. In the steady 
state the heat fluxes shown in Fig. 5 are established. Curve 1 corresponds to points of the half-space 
close to the lower face of the punch, and curves 2 and 3 are drawn for points of the upper and lower 
faces of the punch, respective!y. We chose the following scales for curves 1-3, respectively--l:10 6 W/m 2, 

3 2 3 2 1:5 x 10 W/m,  and 1:2 × 10 W/m.  The contact area remains unchanged all the time. 
In order to investigate the effect of the function P(x) on the characteristics of the steady process 

we carried out calculations for various values of the parameter a. We established the following 
results. 

1. The distribution of the stresses, displacements, temperature and heat fluxes under steady conditions 
do not, in fact, depend on a. The disagreement for values of a = 0.5, 1, and 3 amounted to no more 
than 6%. 

2. When a is reduced from 1 to 0.5 the time at which a steady state is reached increases from 3.7 s 
to 6 s. However, when there is a considerable increase in the value of a, this means sharper action of 
the force P(x), and no reduction in % is observed. In Fig. 6 we show graphs of the vertical displacements 
under the punch for various values of a. The dashed curve is drawn for a stress P(x) = FH(x). 

3. When the punch is loaded with a force given by (7.1), the following temperatures are established 
at each point of the bodies considered 

t(p,z,x) <- tc(p,z), T(p,;,x) ~< Tc(p,z) 
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uz, 104 m 
2 

/ 7  / i/ 
0 2 ¢ 

z,s 
Fig. 6. 

where tc(p, z) and To(p, z )  are the solutions of  the steady contact problem. 
To estimate the accuracy of  the method employed, the characteristics of  the steady state were 

compared with the solutions of  the corresponding steady problem [2]. The  maximum disagreements 
were as follows: for the contact stresses 4%, for the temperature  and heat  flux on the boundary of the 
half-space, 3% and 5%, respectively, and for the temperature  at the bot tom of  the punch 3%. 

We also analysed the effect of the curvatures of  the edge of  the punch on the results obtained. To 
do this, the subdivision of the interval (0, 1) was doubled, while the par t  with curvature was reduced 
by half. The contact stresses and the temperature  on the plane part  of  the punch changed only slightly. 
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